Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation

نویسندگان

  • Hong Sheng
  • Keisuke Nakamura
  • Taro Kanno
  • Keiichi Sasaki
  • Yoshimi Niwano
  • Min Wu
چکیده

The bactericidal effect of hydroxyl radical (·OH) generated by combination of photolysis of hydrogen peroxide (H2O2) and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2) and ultrasound (power: 30 w, frequency: 1.65 MHz) at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbicidal Activity of Artificially Generated Hydroxyl Radicals

The hydroxyl radical, one of the reactive oxygen species, has one unpaired electron in the structure, so that it tends to deprive other substances of an electron which is so-called oxidation. It is known that hydroxyl radicals produced by immunological response kill invading microorganisms by the oxidation. Besides the immune system, it has been demonstrated that hydroxyl radicals play an impor...

متن کامل

Passive ultrasonic irrigation in the presence of a low concentration of hydrogen peroxide enhances hydroxyl radical generation and bactericidal effect against Enterococcus faecalis.

Chemomechanical procedures can be used to eliminate bacteria from root canals. However, detectable bacteria sometimes remain because of the complexity of the root canal system. Endodontic passive ultrasonic irrigation (PUI) with hydrogen peroxide (H2O2) may be a promising option for increasing bactericidal hydroxyl radical (HO•) generation. In this in vitro experiment, we examined the effects o...

متن کامل

Hydroxyl radical induced oxidation of theophylline in water: a kinetic and mechanistic study.

Oxidative destruction and mineralization of emerging organic pollutants by hydroxyl radicals (˙OH) is a well established area of research. The possibility of generating hazardous by-products in the case of ˙OH reaction demands extensive investigations on the degradation mechanism. A combination of pulse radiolysis and steady state photolysis (H2O2/UV photolysis) followed by high resolution mass...

متن کامل

In vitro antioxidant effects of barberry fruit extracts

A vast majority of the studies addressing the free radicals including hydroxyl radical is a damage compound of biochemical molecules such as DNA, proteins and lipids. When free radicals specially hydroxyl radical are not adequately removed from the body, it may damage biological macromolecules, leading to a variety of disease occurs. Therefore, the body should be protected by an enzymatic or no...

متن کامل

Photolysis of hydrogen peroxide, an effective disinfection system via hydroxyl radical formation.

The relationship between the amount of hydroxyl radicals generated by photolysis of H(2)O(2) and bactericidal activity was examined. H(2)O(2) (1 M) was irradiated with laser light at a wavelength of 405 nm to generate hydroxyl radicals. Electron spin resonance spin trapping analysis showed that the amount of hydroxyl radicals produced increased with the irradiation time. Four species of pathoge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015